Md. Kamrul Hasan Reza

Department of Physics Khulna University of Engineering & Technology Khulna-9203, Bangladesh Tel.: +880-41-769468~75 Ext. 587(O), 588 (R) e-mail: mkhreza@phy.kuet.ac.bd, mkhreza1@gmail.com Website : www.kuet.ac.bd/phy/reza/ Instagram: mkhreza1@ Md. Kamrul Hasan Reza Twitter: mkhreza1@ Md. Kamrul Hasan Reza www.youtube.com/c/MdKamrulHasanReza

Welcome to my Class Physics Ph1206

09:00 AM April 27, 2021

COVID-19 Precautions

➢Don't be afraid

- ➢ Be aware of the pandemic
- Use appropriate outfits if you compelled to go out
- ➤Try to maintain proper diet
- Do not forget to exercise (at least one hour) regularly

➢Try to follow the guidelines of WHO and Bangladesh Government

Try to stay at home

Khulna University if Engineering & Technology

Department of Physics

Physics Seasonal for the student of Mechanical Engineering 1st Year, Term-2. Course No. Phy-1206

- Exp-0: To study some laboratory instruments and hence determination of instrumental errors and measurement of length mass and time.
- Exp-1: To show the sensitivity of balance with load by drawing a graph
- Exp-2: To determine the Young's modulus and modulus of rigidity of a short wire by Searle's dynamic method.
- Exp-3: To determine the surface tension of water by capillary tube method.
- Exp-4: To determine the specific heat of liquid by the method of cooling.
- Exp-5: To determine the thermal conductivity of a bad conductor by Lee's and

Charlton's method.

- Exp-6: To determine the frequency of a tuning fork by Melde's experiment.
- Exp-7: To determine the angle and the refractive index of the material of a prism by using a spectrometer.
- Exp-8: To determine the wavelengths of various spectral lines by a spectrometer using discharge tube and a plane diffraction grating.
- Exp-9: To determine the wavelength of a Sodium Light by measuring the diameter of Newton's rings.
- Exp-10: To determine the specific rotation of a sugar solution by using a polarimeter.
- Exp-11: To determine the value of an unknown resistance and to verify the laws of series and parallel resistance by means of a Post Office box.
- Exp-12: To find the value of Planck's constant and photoelectric work function of the material using a photo-electric cell.

Thermal Conductivity of a Bad Conductor

To determine the thermal conductivity of a bad conductor by Lee's and Charlton's Method

Thermal Conductivity of a bad conductor

$$K = \frac{ms\left(\frac{dT}{dt}\right)x}{A(T_1 - T_2)}$$

 $\frac{dT}{dt}$ = Rate of fall of temperature of disc C

x = Thickness of the bad conductor

A = Area of cross section of the bad conductor disc

 $T_1 \& T_2$ = Steady state temperature of discs B and C

Apparatus

Lee's and Charlton's apparatus

Circular disc of a bad conductor

Two thermometers

Slide Calipers

Screw gauge

Table A: Data for time temperature record of metal discs B and C

Time in minutes	0	5	10	15	20	25	30	etc.
T ₁ (°C)								
T ₂ (°C)								

Table A: Data for time temperature record of disc C during its cooling

Time in minutes	0	0.5	1.0	1.5	2.0	2.5	Etc.
Temperature in °C							

Melde's Experiment

To determine the frequency of a tuning fork by Melde's experiment

For Longitudinal position the frequency of the tuning fork

$$N = 2 \sqrt{\frac{1}{4m} \left(\frac{T}{l^2}\right)}$$

For Transverse position the frequency of the tuning fork

$$N = \sqrt{\frac{1}{4m} \left(\frac{T}{l^2}\right)}$$

Where,

T = Tension of the thread

l= Length of each loop

m= Mass per unit length of the thread

A stand with clamp

Table A: Data for estimating frequency of the tuning fork at longitudinal position

No. of obs.	Load on the scale pan	Tension T=(w+w')g	No. of loops p	Length of the thread L	Length of each loop l=L/p	T/I ²	Frequency of the string, n = $\sqrt{\frac{1}{4m} \left(\frac{T}{l^2}\right)}$	Frequency of the fork N=2n

Table B: Data for estimating frequency of the tuning fork at transverse position

No. of obs.	Load on the scale pan	Tension T=(w+w')g	No. of loops p	Length of the thread L	Length of each loop I=L/p	T/I ²	Frequency of the string, n = $\sqrt{\frac{1}{4m} \left(\frac{T}{l^2}\right)}$	Frequency of the fork N=n

Angle of Prism

To determine the angle of a prism and the refractive index of the material of the prism by using a spectrometer

Refractive index of the material of a prism

$$\mu = \frac{\sin \frac{A + \delta_m}{2}}{\sin \frac{A}{2}}$$

A = Angle of the prism

 δ_m = Angle of minimum deviation

Spectrometer

Sodium light

Table A: Data for Angle of Prism

Vernier	No.	Reading	ft image		Reading for right image				2A=	Mean	
scale no.	of	MSR	VD	VSR	M=	MSR	VD	VSR	N=	M~N	А
	005.	(Degree)		V=	S+V	(Degree)		V=	S+V	(Degree)	(Degree)
				VDXVC	(Degree)			VDXVC	(Degree)		
				(Degree)				(Degree)			
V ₁	1										
	2										
	3										
V ₂	1										
2	2										
	3										

Table B: Data for minimum deviation

Vernier	No.	Reading	Reading for left/right image				g for (direct imag	ge	Minimum
scale	of	MSR	VD	VSR	M=	MSR	VD	VSR	N=	deviation
no.	ODS.	(Degree)		V=	S+V	(Degree)		V=	S+V	δ_m =M~N
				VDXVC	(Degree)			VDXVC	(Degree)	(Degree)
				(Degree)				(Degree)		
V ₁	1									
	2									
	3									
V ₂	1									
2	2									
	3									

Discharge Tube

To determine the wavelengths of various spectral lines by a spectrometer using discharge tube and a plane diffraction grating

Wavelength of spectral line, $\lambda = \frac{smo}{nN}$

sinθ

Where,

 θ = Angle of diffraction

n = Order of Diffraction

N = Number of slits/lines per unit length of the grating

Spirit level

Magnifying glass

Diffraction grating with clamping arrangement

Table A: Data for angle of diffraction for different spectral lines

Order of	Color of	Readii	Reading for the left image			Reading for the right image				20	θ	λ
spectrum	the spectrum	MSR S (degree)	VD	VSR V= VDXVC (degree)	Total N=S+V (degree)	MSR S (degree)	VD	VSR V= VDXVC (degree)	Total N= S+V (degree)	= M~N (degree)	(degree)	(A)
1 st order												
2 nd order												

Newton's Rings

To determine the wave length of sodium light by measuring the diameters of Newton's rings

Wavelength of light

$$\lambda = \frac{D_m^2 - D_n^2}{4(m-n)R}$$

 D_m = Diameter of mth ring

 D_n = Diameter of nth ring

R= Radius of curvature of the lower surface of plano-convex lens Apparatus

Newton's ring apparatus consisting of plane glass plate inclined at an angle 45° and a convex lens

A travelling microscope

Sodium lamp

Table A: Data for diameters of Newton's Rings

Ring No.	Left side reading			Right	t side rea	Diameter of the	D^2 (cm ²)	
	MSR	VSR V=	Total	MSR	VSR V=	Total	rings	(cm)
	S	VDXVC	L=S+V	S	VDXVC	R=S+V	D=L~R	
	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	
1								
2								
3								
15								

Specific Rotation

To determine the specific rotation of sugar solution by using a polarimeter

Specific rotation at temperature t and wavelength of light λ

$$S_{\lambda}^{t} = \frac{10\theta}{lc}$$

 θ = Angle of rotation

l = Length of the tube

c = Concentration of solution

Laurent's Half shade polarimeter

Table A: Data for angle of rotation

Strength of sugar solution	No. of obs.	First reading with water (P) (Degree)	Second reading with solution (Q) (Degree)	Angular rotation (Q~P) (Degree)	Mean angular rotation (Degree)	Specific rotation (degree.cm ³ /dm/gm)
	1					
	2					
	3					

Post Office Box

To determine the value of an unknown resistance and to verify the laws of series and parallel resistances by means of a post office box

$$S = R\left(\frac{Q}{P}\right)$$

Equivalent series resistance

$$R_s = R_1 + R_2$$

Equivalent parallel resistance R_p

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$$

Where, R_1 and R_2 are unknown resistances

Post office box

Unknown resistances

Galvanometer

Battery cell

Commutater

Connecting wires

Table A: Data for unknown resistance R₁

	Resistance (Ω)		Direction of	Inference for	
Р	Q	R	deflection	the third arm resistance	
10	10	0 ∞			
100	10				
1000	10				

Potentiometer

To compare the EMF of two cells with the help of a potentiometer

Comparison of EMFs

$$\frac{E_1}{E_2} = \frac{l_1}{l_2}$$

Where,

 l_1 = Balancing length for cell E_1

 l_2 = Balancing length for cell E_2

Potentiometer

Storage cell

Two cells for comparison

High resistance

Rheostat

Galvanometer

A three way key

Connecting wires

Table A: Data for comparison of EMFs

No. Of	Cell No.	Null	Point	Total length	E ₁ /E ₂	Mean E ₁ /E ₂
Obs.		Wire number	Scale reading (cm)	(cm)	₁ / ₂	1' 2
1	First (E ₁)	10th				
	Second (E ₂)					
2	First (E ₁)	9th				
	Second (E ₂)					
3	First (E ₁)	8th				
	Second (E ₂)					
4	First (E ₁)	7th				
	Second (E ₂)					
5	First (E_1)	6th				
	Second (E ₂)					
6	First (E_1)	5th				
	Second (E ₂)					

Photoelectric Effect

To find the value of Planck's constant and work function of the material using a photoelectric cell

$$h = \frac{eV_o}{(v - v_o)}$$

Work function

Where,

 $w = hv_o$

e = Charge of an electron

*V*_o = Stopping potential

v= Frequency of light

 v_o = Threshold frequency

Variable potential

Photocell

Voltmeter

Table A: Data for maximum stopping potential

SI. No.	Frequency of light, v (Hz)	Stopping potential V _o (Volt)	Maximum kinetic energy, eV _o (J)

