Md. Kamrul Hasan Reza

Department of Physics
Khulna University of Engineering \& Technology

Khulna-9203, Bangladesh
Tel.: +880-41-769468~75 Ext. 587(O), 588 (R)
e-mail: mkhreza@phy.kuet.ac.bd, mkhreza1@gmail.com
Website: www.kuet.ac.bd/phy/reza/
Instagram: mkhreza1@ Md. Kamrul Hasan Reza
Twitter: mkhreza1@ Md. Kamrul Hasan Reza
www.youtube.com/c/MdKamrulHasanReza

Welcome to my Class

Physics Ph1206

09:00 AM

April 27, 2021

COVID-19 Precautions

$>$ Don't be afraid
\Rightarrow Be aware of the pandemic
>Use appropriate outfits if you compelled to go out
$>$ Try to maintain proper diet
$>$ Do not forget to exercise (at least one hour) regularly
$>$ Try to follow the guidelines of WHO and Bangladesh Government
$>$ Try to stay at home

Khulna University if Engineenng ax recnuongy

Department of Physics
Physics Seasonal for the student of Mechanical Engineering
$1^{\text {st }}$ Year, Term-2.
Course No. Phy-1206
Exp-0: To study some laboratory instruments and hence determination of instrumental errors and measurement of length mass and time.
Exp-1: To show the sensitivity of balance with load by drawing a graph
Exp-2: To determine the Young's modulus and modulus of rigidity of a short wire by Searle's dynamic method.
Exp-3: To determine the surface tension of water by capillary tube method.
Exp-4: To determine the specific heat of liquid by the method of cooling.
Exp-5: To determine the thermal conductivity of a bad conductor by Lee's and Charlton's method.
Exp-6: To determine the frequency of a tuning fork by Melde's experiment.
Exp-7: To determine the angle and the refractive index of the material of a prism by using a spectrometer.
Exp-8: To determine the wavelengths of various spectral lines by a spectrometer using discharge tube and a plane diffraction grating.
Exp-9: To determine the wavelength of a Sodium Light by measuring the diameter of Newton's rings.
Exp-10: To determine the specific rotation of a sugar solution by using a polarimeter.
Exp-11: To determine the value of an unknown resistance and to verify the laws of series and parallel resistance by means of a Post Office box.
Exp-12: To find the value of Planck's constant and photoelectric work function of the material using a photo-electric cell.

Thermal Conductivity of a Bad Conductor

To determine the thermal conductivity of a bad conductor by Lee's and Charlton's Method

Thermal Conductivity of a bad conductor

$$
K=\frac{m s\left(\frac{d T}{d t}\right) x}{A\left(T_{1}-T_{2}\right)}
$$

Where,

$$
\mathrm{m}=\text { Mass of the disc } \mathrm{C}
$$

$s=$ Specific heat of the disc C

$\frac{d T}{d t}=$ Rate of fall of temperature of disc C

$x=$ Thickness of the bad conductor

$A=$ Area of cross section of the bad conductor disc

$$
T_{1} \& T_{2}=\text { Steady state temperature of discs } \mathrm{B} \text { and } \mathrm{C}
$$

Apparatus

Lee's and Charlton's apparatus

Circular disc of a bad conductor

Two thermometers

Slide Calipers

Screw gauge

Burner

Table A: Data for time temperature record of metal discs B and C

Time in minutes	0	5	10	15	20	25	30	etc.
$\mathrm{T}_{1}\left({ }^{\circ} \mathrm{C}\right)$								
$\mathrm{T}_{2}\left({ }^{\circ} \mathrm{C}\right)$								

Table A: Data for time temperature record of disc C during its cooling

Time in minutes	0	0.5	1.0	1.5	2.0	2.5	Etc.
Temperature in ${ }^{\circ} \mathrm{C}$							

Melde's Experiment

To determine the frequency of a tuning fork by Melde's experiment

(a) longitudinal wave

For Longitudinal position the frequency of the tuning fork

$$
N=2 \sqrt{\frac{1}{4 m}\left(\frac{T}{l^{2}}\right)}
$$

For Transverse position the frequency of the tuning fork

Where,

$$
N=\sqrt{\frac{1}{4 m}\left(\frac{T}{l^{2}}\right)}
$$

$T=$ Tension of the thread

$l=$ Length of each loop
$m=$ Mass per unit length of the thread

Apparatus

Tuning fork

Thread

A stand with clamp

Pulley

Ruler

Weight box

Table A: Data for estimating frequency of the tuning fork at longitudinal position

Table B: Data for estimating frequency of the tuning fork at transverse position

No. of obs.	Load on the scale pan	Tension $T=\left(w+w^{\prime}\right) g$	No. of loops p	Length of the thread L	Length of each loop $\mathrm{I}=\mathrm{L} / \mathrm{p}$	$\mathrm{T} / \mathrm{I}^{2}$	Frequency of the string, $\mathrm{n}=$ $\sqrt{\frac{1}{4 m}\left(\frac{T}{l^{2}}\right)}$	Frequency of the fork $\mathrm{N}=\mathrm{n}$

Angle of Prism

To determine the angle of a prism and the refractive index of the material of the prism by using a spectrometer

Refractive index of the material of a prism

$$
\mu=\frac{\sin \frac{A+\delta_{m}}{2}}{\sin \frac{A}{2}}
$$

Where,

A = Angle of the prism

$$
\delta_{m}=\text { Angle of minimum deviation }
$$

Apparatus

Spectrometer

Sodium light

Prism

Sprit level

Magnifying glass

Table A: Data for Angle of Prism

Vernier scale no.	No. of obs.	Reading for left image				Reading for right image				$2 A=$ $\mathrm{M}^{\sim} \mathrm{N}$ (Degree)	Mean A (Degree)
		MSR (Degree)	VD	VSR $\mathrm{V}=$ VDXVC (Degree)	$M=$ S+V (Degree)	MSR (Degree)	VD	VSR $\mathrm{V}=$ VDXVC (Degree)	$N=$ $S+V$ (Degree)		
V_{1}	1										
	2										
	3										
V_{2}	1										
	2										
	3										

Table B: Data for minimum deviation

	No. of obs.	Reading for left/right image				Readin	for	direct im		
scale no.		MSR (Degree)	VD	VSR $V=$ VDXVC (Degree)	$\mathrm{M}=$ S+V (Degree)	MSR (Degree)	VD	VSR $\mathrm{V}=$ VDXVC (Degree)	$\mathrm{N}=$ S+V (Degree)	deviation $\delta_{m}=\mathrm{M} \sim \mathrm{~N}$ (Degree)
V_{1}	1									
	2									
	3									
V_{2}	1									
	2									
	3									

Discharge Tube

To determine the wavelengths of various spectral lines by a spectrometer using discharge tube and a plane diffraction grating

Wavelength of spectral line, $\quad \lambda=\frac{\sin \theta}{n N}$

Where,

$\theta=$ Angle of diffraction

$$
n=\text { Order of Diffraction }
$$

$N=$ Number of slits/lines per unit length of the grating

Apparatus

Spectrometer

Spirit level

Magnifying glass

Diffraction grating with clamping arrangement

Table A: Data for angle of diffraction for different spectral lines

Newton's Rings

To determine the wave length of sodium light by measuring the diameters of Newton's rings

Wavelength of light

$$
\lambda=\frac{D_{m}^{2}-D_{n}^{2}}{4(m-n) R}
$$

Where,

$\mathrm{D}_{\mathrm{m}}=$ Diameter of mth ring

$$
\mathrm{D}_{\mathrm{n}}=\text { Diameter of nth ring }
$$

$\mathrm{R}=$ Radius of curvature of the lower surface of plano-convex lens

Apparatus

Newton's ring apparatus consisting of plane glass plate inclined at an angle 45° and a convex lens

A travelling microscope

Sodium lamp

Table A: Data for diameters of Newton's Rings

Ring No.	Left side reading			Right side reading			Diameter of the rings $D=L \sim R$ (cm)	$\begin{aligned} & \mathrm{D}^{2} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$
	MSR S (cm)	VSR V= VDXVC (cm)	Total $\begin{aligned} & \mathrm{L}=\mathrm{S}+\mathrm{V} \\ & (\mathrm{~cm}) \end{aligned}$	MSR S (cm)	VSR V= VDXVC (cm)	Total $\begin{aligned} & \mathrm{R}=\mathrm{S}+\mathrm{V} \\ & (\mathrm{~cm}) \end{aligned}$		
1								
2								
3								
...								
...								
15								

Specific Rotation

To determine the specific rotation of sugar solution by using a polarimeter

Specific rotation at temperature t and wavelength of light λ

$$
S_{\lambda}^{t}=\frac{10 \theta}{l c}
$$

Where,

$$
\theta=\text { Angle of rotation }
$$

$$
l=\text { Length of the tube }
$$

$c=$ Concentration of solution

Apparatus

Polarimeter

Sodium lamp

Sugar

Clean water

Graduated cylinder

Two beakers

Filter paper

Pipette

Glass rod

Laurent's Half shade polarimeter

Optic axis

Table A: Data for angle of rotation

Strength of sugar solution	No. of obs.	First reading with water (P) (Degree)	Second reading with solution (Q) (Degree)	Angular rotation (Q^{\sim} P) (Degree)	Mean angular rotation (Degree)	Specific rotation (degree.cm ${ }^{3}$ /dm/gm)
	1					
	2					
	3					

Post Office Box

To determine the value of an unknown resistance and to verify the laws of series and parallel resistances by means of a post office box

Unknown Resistance

$$
S=R\left(\frac{Q}{P}\right)
$$

Equivalent series resistance

$$
R_{S}=R_{1}+R_{2}
$$

Equivalent parallel resistance R_{p}

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Where, R_{1} and R_{2} are unknown resistances

Apparatus

Post office box

Unknown resistances

Galvanometer

Battery cell

Commutater

Key

Connecting wires

Table A: Data for unknown resistance R_{1}

Resistance (Ω)			Direction of	
P	Q	R	deflection	the third arm resistance
10	10	0 ∞		
100	10			
1000	10			

Potentiometer

To compare the EMF of two cells with the help of a potentiometer

Comparison of EMFs

$$
\frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}
$$

Where,

$l_{1}=$ Balancing length for cell E_{1}

$l_{2}=$ Balancing length for cell E_{2}

Apparatus

Potentiometer

Storage cell

Two cells for comparison

High resistance
Rheostat
Galvanometer
A three way key
Connecting wires

Table A: Data for comparison of EMFs

No.	Cell No.	Null Point		Total length(cm)	$\begin{aligned} & E_{1} / E_{2} \\ & = \\ & I_{1} / I_{2} \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & E_{1} / E_{2} \end{aligned}$
Obs.		Wire number	Scale reading (cm)			
1	First (E_{1})	10th				
	Second (E_{2})					
2	First (E_{1})	9th				
	Second (E_{2})					
3	First (E_{1})	8th				
	Second (E_{2})					
4	First (E_{1})	7th				
	Second (E_{2})					
5	First (E_{1})	6th				
	Second (E_{2})					
6	First (E_{1})	5th				
	Second (E_{2})					

Photoelectric Effect

To find the value of Planck's constant and work function of the material using a photoelectric cell

Planck's constant

$$
h=\frac{e V_{o}}{\left(v-v_{o}\right)}
$$

Work function

$$
w=h v_{o}
$$

Where,

$$
e=\text { Charge of an electron }
$$

$$
V_{o}=\text { Stopping potential }
$$

$$
v=\text { Frequency of light }
$$

$$
v_{o}=\text { Threshold frequency }
$$

Apparatus

Variable potential

Photocell

Ammeter

Voltmeter

Frequency filter

Table A: Data for maximum stopping potential

SI. No. Frequency of Stopping potential Maximum kinetic energy, light, $v(H z) \quad V_{0}$ (Volt) $\mathrm{eV}_{\mathrm{o}}(\mathrm{J})$

